Follow by Email

Assine nosso Feed , e receba as atualizações do blog


Podes dizer-me, por favor, que caminho devo seguir para sair daqui?
Isso depende muito de para onde queres ir - respondeu o gato.
Preocupa-me pouco aonde ir - disse Alice.
Nesse caso, pouco importa o caminho que sigas - replicou o gato.

Siga o Coelho Branco

Análise combinatória - Combinação simples

[♀]Matemática na Veia 2007-2016 O Blog do Estudante Inteligente

Relatos de erros e correções em relação ao português serão bem vindos e podem ser esclarecidos através do RH - Sugestões e Reclamações.

E aí! Já treinou bastante os outros conteúdos do blog? Já sabe desenvolver fatoriais, permutações e arranjos, e agora está fera. Quer aprender mais ainda?
Então vamos aprender mais um conteúdo legal de análise combinatória.
Caso surgir alguma dúvida navegue pela aba
Combinação simples.

Denominamos combinações simples de n elementos distintos tomados p a p aos subconjuntos formados por p elementos distintos escolhidos entre os n elementos dados.

É importante observar que duas combinações são diferentes quando possuem elementos distintos, não importando a ordem em que os elementos são colocados.
Representando por Cn,p o número total de combinações de n elementos tomados p a p , temos a seguinte fórmula:

 

“Combinação simples de n elementos tomados p a p ( ) são subconjuntos com exatamente p elementos que se podem formar com os n elementos dados”.

Vamos relembrar alguns conceitos de arranjos.
Vamos passear um pouco por arranjos, e depois vamos seguir no mesmo exemplo trabalhando com combinação.

Vejamos um exemplo clássico.

1)      Vamos considerar o conjunto A = {1,2,3,4,5}
Agora vamos formar todos os arranjos possíveis de 2 elementos distintos do conjunto A.

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
(2,1) (3,1) (4,1) (5,1) (3,2) (4,2) (5,2) (4,3) (5,3) (5,4)

Porque (1,2) ≠ (2,1) ; (1,3) ≠ (3,1) , etc.

Note que usamos ( ) para denotar arranjos, pois são pares ordenados, o que implica em elementos distintos em cada agrupamento.
A simples mudança de ordem gera um novo par ordenado.

Então, utilizando a fórmula geral para arranjos simples. Onde
n= 5 (número total de elementos do conjunto A)
p= 2 (número de elementos tomados p a p – tomamos 2 elementos de cada vez para fazer os agrupamentos)

    

Observe que trabalhamos com 2 elementos tomados p a p, do conjunto com o total de n=5 elementos. Ou seja, fizemos arranjos de 2 a 2 com os 5 números do conjunto A.

Mas, e se quisermos saber, quantos subconjuntos de 2 elementos, podem ser formados por estes arranjos. Como proceder? Agora a conversa muda um pouco! Vamos ver como fica.
Os subconjuntos de 2 elementos que podemos formar são:
{1,2}, {1,3}, {1,4} ,{1,5} ,{2,3} ,{2,4} ,{2,5} ,{3,4}, {3,5}, {4,5}
Desta forma temos:
, porque {1,2}={2,1} ;  {1,3} = {3,1} , etc.

Note que usamos {} para denotar combinações, pois são subconjuntos, e a ordem dos elementos num subconjunto não se altera.
E com 3 elementos como fica? O número de arranjos será:  
Temos: 

E o número de subconjuntos será:  

Já deu para perceber que:            

 
 
Vamos ver agora alguns exemplos mais elaborados.

Exercícios resolvidos de combinações simples.

1)      Uma prova consta de 6 questões, das quais o aluno deve resolver 3. De quantas formas ele poderá escolher as 3 questões?

Quer-se agrupar 3 elementos, dentre os 6 existentes.

Perceba que a ordem em que os elementos aparecerão não será importante, uma vez que, ao resolver a  1ª , a 2ª e a 3ª questão é o mesmo que resolver a 2ª , a 3º e a 1ª, portanto é um problema de combinação.

Logo, um aluno pode escolher suas 3 questões de 20 maneiras diferentes.


 Observe que, se quiséssemos apenas fazer os arranjos destes elementos 3 a 3, teríamos:


Faça você os arranjos, e depois verifique como foi feito nos exemplos anteriores, que esta afirmação é verdadeira.

2) De quantos modos distintos Amiroaldo pode escolher quatro entre as nove camisetas regata que possui para levar em uma viagem para Mosqueiro.
Suponha que Amiroaldo escolha as camisas 1, 2, 3 e 4.

                      Amiroaldo escolhendo as camisas:



                 Fonte camisa: http://www.portalimpacto.com.br/
Veja que (1, 2, 3, 4) = (1, 3, 4, 2), pois não importa em que ordem Amiroaldo escolhe as camisas que vai levar, o importante é que as camisas escolhidas são as mesmas na primeira e na segunda situação. Problemas como esses são resolvidos com a idéia de Combinação simples.


 Existem 126 maneiras diferentes para Amiroaldo escolher 4 camisetas das 9 que possui.

Se fosse calculado o número de arranjos destas camisetas tomadas 4 a 4, teríamos 3024 arranjos.
Faça você os arranjos, e depois verifique como foi feito nos exemplos anteriores, que esta afirmação é verdadeira. (Brincadeira! Para você verificar a veracidade desta afirmação, vou dar uma dica de um software legal para você conferir as respostas dos exercícios propostos -  Baixar software -:).

É só baixar e descompactar em uma pasta de sua preferência.
Observação: 

- Após terminar seus downloads, passe um antivírus antes de abrir seu arquivo.
- Crie um ponto de restauração no Windows, antes de instalar qualquer programa,ou arquivo . 
 
3)  Ane, Elisa, Rosana, Felipe e Gustavo formam uma equipe. Dois deles precisam representar a equipe em uma apresentação. Quais e quantas são as possibilidades?
Representamos cada pessoa por uma letra
A: Ane;
E: Elisa;
R: Rosana;
F: Felipe;
G: Gustavo.
Precisamos determinar todos os subconjuntos de 2 elementos do conjunto de 5 elementos {A,E,R,F,G}. A ordem em que os elementos aparecem nos subconjuntos não importa, pois Ane-Elisa, por exemplo, é a mesma dupla que Elisa-Ane.
Então, os subconjuntos  de 2 elementos são?

{A,E},{A,R},{A,F},{A,G},{E,R}{E,F},{E,G},{R,F},{R,G}{F,G}.
Chamamos estes subconjuntos de combinação simples de 5 elementos tomados com 2 a 2. Escrevemos C5,2 .
Onde C5, 2   representa a fórmula das combinações simples:
Substituindo na fórmula


Preste atenção nesta próxima propriedade das combinações.
Propriedade importante das combinações:




De modo geral temos que:

Cn, p = Cn, n-p


Confirme esta propriedade utilizando o software Mathsys.
Observação:  Siga os mesmos conselhos dados na observação anterior

Existem notações diferentes para combinações simples. Vamos usar uma em particular, pois será muito importante nos familiarizar-mos com ela.

Veja que:



Veja que, a frase “Vários caminhos levam a Roma” , se encaixa bem nesta parte do texto, pois.
 



Vamos ver alguns exemplos.
Exercícios resolvidos – Número binomial de ordem n e classe p.
1º - Vamos calcular o valor de:




5º - No jogo de truco, cada jogador recebe 3 cartas de um baralho de 40 cartas(são excluídas as cartas 8, 9 , 10).

De quantas maneiras diferentes um jogador pode receber suas 3 cartas
As 3 cartas diferem entre si pela natureza delas, e não pela ordem. Como a ordem não importa, calculamos?

Portanto, cada jogador pode receber suas 3 cartas de 9880 maneiras diferentes.
Faça estes exercícios com as outras notações. Lembre que, matemática só se aprende praticando muito.
Por enquanto é isso. Ficamos por aqui, mas em breve serão disponibilizados exercícios e mais alguns conceitos e curiosidades sobre este conteúdo.


Se você deseja baixar o conteúdo deste artigo em formato PDF, baixe o arquivo:

MATEMÁTICA NA VEIA - ANÁLISE COMBINATÓRIA - COMBINAÇÕES SIMPLES
 Por enquanto ficamos por aqui. Em breve mais atualizações, aguarde!

Se você quer cooperar com dicas, indicar algum blog legal de matemática, programas legais que conhece, artigos, trabalhos de escola. Fique a vontade. Mande um e-mail para caco36@ibest.com.br ,ou comente aqui mesmo. Por enquanto ficamos por aqui! Agradeço antecipadamente, comentários, dicas, criticas e sugestões.

Observação:
- Após terminar seus downloads, passe um antivírus antes de abrir seu arquivo.
- Crie um ponto de restauração no Windows, antes de instalar qualquer programa,ou arquivo . 



VII) BIBLIOGRAFIA:
DANTE, Luiz Roberto. Matemática Dante Volume único, São Paulo, 1º edição, Ática, 2009.
DANTE,P.J. & HERSH, R. A experiência matemática, Rio de Janeiro, Francisco Alves, Ática, 1997.
BEZERRA, Manoel Filho. Matemática para o ensino médio, Volume único, Manoel Jairo Bezerra. São Paulo, Scipione (Série parâmetros). 2004, 5º Edição.
Matemática - vol 3, 2º grau aula 52. TIZZIOTTI,
Adaptações e imagem - camisa
http://www.portalimpacto.com.br/

Share on Google Plus
Antonio Sobre a Autor:
Antonio Blogueiro desde 2007, gaúcho, gosta muito de ler, e é totalmente viciado em internet. Comecei blogar em 2005, e criei o Matemática na Veia no inicio de 2007. Sou formado em licenciatura Plena em Matemática pela UFPEL. Servidor Público,e fanático pela Web.
    Blogger Comment
    Facebook Comment

40 Comentários:

  1. Késia,
    gostei muito PARABÉNS PELO SITE !!!

    ResponderExcluir
  2. Obrigado pela sua participação aqui no blog Késia! Precisando estamos às ordens. Abraços e volte sempre.

    ResponderExcluir
  3. Oi Caco, tudo bem?
    Gostaria que me explicasse como faço para simplificar:
    a)Arranjo de n elementos tomados 3 a 3,divido por arranjo de n-1 elementos, tomados 2 a 2 .
    b)Arranjo de 2n elementos tomados 2 a 2, divido por arranjo de 2n+1 elementos, tomados 2 a 2.

    Grata!

    Paôla

    ResponderExcluir
  4. Tudo bem Paola? A idéia é simplificar o numerador pelo denominador, mas como temos dois arranjos vamos simplificar os dois separadamente. An,3 e An-1,2:

    An,p=n!/(n-p)! Logo

    Observe que vou expandir o menor valor n! até chegar ao maior que é (n-3)!

    An,3 = n!/(n-3)! = n(n-1)(n-2)(n-3)! / (n-3)!
    Cheguei em (n-3)!, agora é só simplificar (n-3)!/(-3)! e fica
    = n(n-1)(n-2)
    e
    Procedimento igual ao anterior:

    An-1,2 = (n-1)!/[(n-1)-2]!=(n-1)(n-2)(n-3)!/(n-3)! =(n-1)(n-2)

    Assim : n(n-1)(n-2) /(n-1)(n-2)= n

    O outro procede do mesmo modo.
    Preste atenção e treine bastante, pois fatoriais sempre exigem muita atenção ao simplificar.

    Abraços!

    ResponderExcluir
  5. Olá professor!
    Valeu pela ajuda!!!
    Resolvi os exercícios de acordo com sua orientação e deu certinho.
    OBRIGADA!

    Abraços
    Paôla

    ResponderExcluir
  6. Olá Professor !
    estou precisando de ajuda nessa questão aqui!
    Se puder ajudar, eu fico grato
    1 - Com 10 espécies de frutas, quantos tipos de salada, contendo 6 espécies diferentes, podem ser feitas?

    ResponderExcluir
  7. De nada Paôla! Quando precisar é só pedir.

    ResponderExcluir
  8. Daniel, tu não leu o texto, senão teria visto que é só colocar os valoes de n e p na fórmula.

    Tente fazer n=10 e p=6 . Coloque na fórmula. Cn,p

    Um abraço!

    ResponderExcluir
  9. Olá estou muito preocupada com matemática meu professor não explica muito bem sabe :s

    (2n)!sobre (2n-2)! = 12

    ResponderExcluir
  10. Caroline disse...
    "Olá estou muito preocupada com matemática meu professor não explica muito bem sabe :s

    (2n)!sobre (2n-2)! = 12"

    (2n)!/(2n-2)!=12 Caroline, qual o maior termo? Tu sabe ver isso?
    Vamos ver :
    Coloque um valor no lugar do n.
    Observe que uso os termos sem o sinal de fatorial.

    (2n) => vou usar o valor 1 para ver qual o maior termo.
    (2.1) => 2 pela definição.

    (2n-2) => vou usar o mesmo valor pois estou fazendo uma comparação.
    (2n-2) => (2.1-2)=> (2-2)=0
    Note que 2n > 2n-2 , logo vou desenvolver o maior termo até chegar ao valor igual, no caso (2n-2)!

    Vamos desenvolver (2n)! então .Você sabe fazer isto?

    Use sempre a definição de fatorial n!=n(n-1)!

    (2n)!= 2n.(2n-1)! 1º passo.
    = 2n.(2n-1).(2n-2)! 2º passo.
    Viu como chegamos ao termo (2n-1)!
    Como é uma multiplicação podemos simplificar a equação que ficou assim após desenvolvermos o maior termo.

    2n.(2n-1).(2n-2)! / (2n-2)!=12 = 12 A barra "/" significa uma divisão.

    Simplicando temos: 2n.(2n-1)=12
    Daqui em diante é fácil.
    Faz as multiplicações necessárias para ficar com uma equação que pode ser resolvida por Baskara.

    4.n^2-2.n-12 = 0 . Posso dividir por 2 toda a equação que fica 2.n^2-1.n-6 = 0

    A resposta é n ={ 2;-1,5}

    Coloque os valores encontrados no lugar da equação fatorial dada.
    A resposta vai ser 12.

    Observe que a existe fatorial somente de números naturais, ouse já números N={ 0,1,2,3,...} , logo o 2º valor encontrado (1,5) não é verdadeiro para o fatorial da equação dada.

    Espero ter ajudado você! Não esqueça de divulgar o blog no seu Orkut. Leia os outros tópicos sobre fatoriais e análise combinatória. Vai lhe ajudar a assimilar melhor as regras e propriedades ddeste conteúdo.

    Abraços!

    ResponderExcluir
  11. Olá Caco, tudo bem?

    Estava estudando este problema, mas, não consegui entender a solução dele, e por que multiplicar por 4?

    Agradeço pela ajuda!

    Uma organização tem 25 membros, dos quais 4 são doutores. De quantos modos pode ser formada uma comissão de 3 membros, tendo no mínimo, um doutor?

    solução:

    1 doutor + 2 outros não doutores --> 4.C21,2 = 4.21.20/(2.1) = 840
    2 doutores + 1 não doutor --> C4,2.C21,1 = [(4.3)/(2.1)].21 = 126
    3 doutores --> C4,3 = 4
    Logo, são 840 + 126 + 4 = 970

    ResponderExcluir
  12. Tudo bem Gilvani? A idéia básica deste desenvolvimento foi separar por casos. Como eu já falei é sempre mais fácil diminuir o número de possibilidades para entender melhor o problema. Veja que existem 4 doutores ou seja do conjunto total temos que tomar 4 a 4.
    Como não dá para fazer isto direto, pois teriam que ser diminuidos os outros membros que não eram doutores.
    Que é a mesma coisa. Ele teve que multiplicar por 4 pois fez por partes.
    Vou mostrar utilizando a fórmula.

    Total de comissoes.

    C25,3 = 25!/3![25-3]! =2300

    Total de comisssões dos não doutores.

    C21,3=1330

    Diminui os dois 2300-1330=970

    ResponderExcluir
  13. Oi Caco,

    Peguei este exercício de Combinação pra fazer, mas, é diferente de tudo o que já estudei, depois de algumas horas, não consegui resolver, então, resolvi apelar para o seu blog, o qual sempre me ajudou!


    Deve ser formada uma comissão de 3 estatísticos e 6 economistas. De quantas maneiras diferentes poderão ser formadas essas comissões?
    -> A resposta consta como 700.


    Obrigado!

    ResponderExcluir
  14. Gilvani, faltam dados neste problema1! Da forma como esta daria 511 a resposta.

    ResponderExcluir
  15. Boa tarde,

    Estou com um problema que está me causando algumas dúvidas:
    Para produzir cerveja caseira utilizo 3 porções de lúpulo, 2 de malte e 1 de fermento.
    Possuo 35 tipos de lúpulo, 20 de malte e 30 de fermento.
    Na receita posso utilizar 3 tipos de lúpulo diferentes ou 2 tipos ou 1 tipo, da mesma forma para o malte.

    Uma das dúvidas é quando posso ter todos os tipos diferentes: (35x34x33x20x19x30)/7!, ou seria (C(35,3) x C(20,2) x 30)/3!)?
    Agradeço desde já a atenção dispensada.

    []'s
    Metal

    ResponderExcluir
  16. Metal, nenhum dos dois, observe que tem as condições que nos remete a combinações com repetições "3 tipos de lúpulo diferentes ou 2 tipos ou 1 tipo'

    Vou usar um exemplo genérico para facilitar a compreessão;
    Supondo que L=lúpulo
    Se fossemos fazer "3 tipos de lúpulo diferentes" não teríamos repetições nesta receita, mas veja que temos " ou 2 tipos diferentes ou 1 tipo" logo teríamos por assim dizer repetições.

    Vejamos um exemplo: Tenho 4 tipos diferentes de L disponíveis [l1,l2,l3,l4]
    e tenho que fazer subconjuntos de 3 destes l's (p a p) .

    Subconjuntos formados 3 a 3

    L1 e L1 com {L1,ou L2 ou L3 ou L4}=> {L1L1L1),(L1L1L2)(L1L1L3),(L1L1L4)}

    L1 e L2 com {L2 ou L3 ou L4} => {L1L2L2),(L1L2L3),(L1L2L4)}

    L1 e L3 com {L3 ou L4} => {(L1L3L3),(L1L3L4)}

    L1 e L4 com { L4} => {(L1L3L4)}

    ------------------------------------------------------------------
    L2 e L2 com { L2 ou L3 ou L4} => {(L2L2L2)(L2L2L3),(L2L2L4)}

    L2 e L3 com { L3 ou L4} => {(L2L3L3),(L2L3L4)}

    L2 e L4com { L4} => {(L2L4L4)}

    ----------------------------------------------------------------

    L3 e L3 com { L3 ou L4} => {(L3L3L3),(L3L3L4)}

    L3 e L4com { L4} => {(L3L4L4)}

    ---------------------------------------------------------------


    L4 e L4 com { L4} => {(L4L4L4)}


    Assim C[(p-1,n),(p+n-1)] => C[(4-1,3),(4+3-1)]= C[(3,3),(6 )]= 6!/3!.3!= 20

    Do mesmo modo usamos para o seu caso.


    Logo C[(p-1,n),(p+n-1)] para os dois primeiros casos, ja para o 3º esta correto, é 30.
    Logo (37!/34!.3! ).(21!/19!.2!).30 =48951000


    Abraços, e não esqueça de mandar uma cerveja para experimentar. hehe!

    ResponderExcluir
  17. oi tudo bem ! me ajuda

    1°- Quantos numeros de dois algarismos podem ser formados no sistema decimal de numeração?
    italo

    ResponderExcluir
  18. Como posso chegar a esse resultado?


    1) Em dada competição, cinco atletas disputam as medalhas de ouro, prata e bronze. De quantas maneiras diferentes pode-se ter a formação do podium?
    a) 10
    b) 60
    c) 125
    d) 15
    e) 243

    ResponderExcluir
  19. 5 possibilidades para ouro
    4 possibilidades para prata
    3 possibilidades para bronze

    logo 5.4.3=60 letra "b"

    ResponderExcluir
  20. Combinatória é fácil de aprender, mas difícil de resolver.

    ResponderExcluir
  21. Como temos cinco atletas na competição e no podium temos três lugares ordenados, trata-se de um problema de arranjo simples. Para a posição do ouro temos 5 possibilidades, para a prata; 4 possibilidades e bronze temos 3 possibilidades, portanto N=5*4*3=60.

    ResponderExcluir
  22. 34. Uma classe tem 18 meninas, incluindo Victória e Karine. De quantas maneiras é possível escolher um time de
    basquete (5 jogadoras), de modo que Victória e Karine não estejam ambas no time?
    a) 3.640
    b) 4.368
    c) 5.728
    d) 8.008
    e) 8.568

    ResponderExcluir
  23. minha prova é amanhã e eu tenho que resolver essa questão do meu trabalho!

    1- dos 12 jogadores levados para uma partida de vôlei, apenas 6 entrarão em quadra no início do jogo. sabendo que 4 são levantadores e 8 são atacantes, como escolher 2 levantadores e 4 atacantes?

    ResponderExcluir
  24. vera consultou um nutricionista que lhe sugeriu uma dieta que incluísse a ingestão de três frutas diariamente, dentre as seguintes opções: abacaxi, banana,caqui,laranja,maça,pera e uva. suponha que vera siga rigorosamente a sugestão do nutricionista, ingerindo três frutas por dia, sendo pelo menos duas diferentes. então, ela pode montar sua dieta diária, com as opções diferentes de frutas recomendadas, de

    a) 57 maneiras
    b) 50 maneiras
    c) 56 maneiras
    d) 77 maneiras

    tentei resolver essa questão de n maneiras mas nao acho uma formula por causa desse maldito 2 diferentes então ele pode escolher 1 igual ou 3 distintos no caso né ? ou devo obedecer a regra de 2 frutas iguais e 1 diferente pra satisfazer o 2 diferentes ou eu posso escolher 3 diferentes ? eu acho pela minha intuição que daria letra d mas nao sei como resolver isso alguem sabe uma formula e poderia me explicar ?

    ResponderExcluir
  25. Se puderem me ajudar com essa questão:


    Quantos segmentos de reta podemos obter com os pontos abaixo?
    Obs: 2 pontos distintos determinam um segmento de reta.


    A B C (* = ponto)
    * * *
    D E
    * *
    A)5
    B)8
    C)10
    D) 20
    E)32

    ResponderExcluir
  26. Hello this is somewhat of off topic but I was wondering if blogs use WYSIWYG editors or if you have to manually code with HTML.
    I'm starting a blog soon but have no coding expertise so I wanted
    to get advice from someone with experience.
    Any help would be enormously appreciated!

    Take a look at my site: bet angel

    ResponderExcluir
  27. Olá professor, estou com uma enorme dúvida diante desse problema, tentei procurar várias combinações e não chego ao resultado, acredito ser Combinações para a resolução porém posso estar enganada mas gostaria de sua ajuda.

    Desde já, Grata.


    Beatriz, Eduardo, Luísa, Regina e Ronaldo formaram um grupo para realizar um serviço para a Empresa Junior da Fatec-Bauru

    Para identificar o seu grupo, esses alunos criaram uma sigla de 5 letras contendo, necessariamente, a primeira letra do nome de cada um deles: B,E,L,R e R

    Nessas condições, a quantidade de siglas distintas que é possível formar é:

    (A) 72
    (B) 60
    (C) 30
    (D) 24
    (E) 15

    ResponderExcluir
  28. Olá
    Gostaria de saber quantas combinações existem em 5 jogos de futebol=10 times ,vitoria,empate,derrota,é possível fazer esse cálculo?
    Grato,Rogério.

    ResponderExcluir
  29. Olá
    Gostaria de saber quantas combinações existem em 5 jogos de futebol=10 times ,vitoria,empate,derrota,é possível fazer esse cálculo?
    Grato,Rogério.

    ResponderExcluir
  30. Olá, não consigo resolver esse problema.

    De quantos modos oito estagiários de engenharia podem
    ser combinados para formar duas duplas e um grupo com
    quatro estagiários para executar determinada tarefa?
    (A) 8
    (B) 420
    (C) 1.132
    (D) 1.680
    (E) 40.320

    ResponderExcluir
  31. como resolver esse problema,,

    Considere um ano com 365 dias. Melissa deseja vestir-se de maneira diferente em cada dia desse ano. Ela
    gosta de se vestir utilizando uma blusa, uma saia e um sapato. Ela entende que se vestir de maneira
    diferente, consiste em trocar, pelo menos, uma das peças do vestiário dentre blusa, saia ou sapato. Sabe-se
    que Melissa possui 5 pares de sapato e ela irá às compras para adquirir as saias e as blusas que irá utilizar
    nesse ano. Para atingir o seu objetivo de vestir-se de maneira diferente em cada dia do ano, qual o número
    mínimo de peças (soma do número de saias com o número de blusas) que Melissa deve adquirir?
    (A) 18.
    (B) 19.
    (C) 20.
    (D) 23.
    (E) 25

    ResponderExcluir
  32. Alguem sabe a fórmula para calcular
    o próximo número da sequencia de
    uma combinação sem repetição ?
    Por exemplo :
    C(10,3) = 120 possibilidades
    012, 013, 014, 015, 016, 017, 018, 019, 023, 024, 025
    026, 027, 028, 029, 034, ....., 789

    ResponderExcluir
  33. Alguem sabe a fórmula para calcular
    o próximo número da sequencia de
    uma combinação sem repetição ?
    Por exemplo :
    C(10,3) = 120 possibilidades
    012, 013, 014, 015, 016, 017, 018, 019, 023, 024, 025
    026, 027, 028, 029, 034, ....., 789 meu e-mail é wfl@ig;com.br

    ResponderExcluir
  34. Na selecao brasileira de futebol existem 8 jogadores de ataque
    6 meio campo
    6 defesa
    3 goleiros
    Quantos times diferentes podem ser formados utilizando se de
    1 goleiro
    4 defensores
    3 meio campista
    3 atacante

    ResponderExcluir
  35. Olá, não estou conseguindo resolver esse problema:

    Determinada indústria de automóveis está formando
    uma comissão para representar a empresa em Brasília,
    com o objetivo de arrecadar maiores investimentos para
    esse setor. Sabendo-se que a comissão deverá ser
    composta por 4 mulheres e 3 homens, e que se
    inscreveram para representar a empresa 10 mulheres e
    15 homens, quantas comissões diferentes poderão ser
    formadas?
    a) 1.365
    b) 95.550
    c) 12.749
    d) 56.500

    ResponderExcluir

Precisa de ajuda? Use o e-mail caco36@ibest.com.br

É necessário Colocar sua dúvida aqui nos comentários também. Assim que for possível ela será resolvida.

Regras básicas para comentar:

- Ao pedir ajuda,não use a opção anônimo.
- Como última alternativa use a opção [ Nome e (ou) Url ].
- Os comentários serão todos moderados.
- Obrigado!

Aceita tomar um chá conosco? Atreva-se!

Postagens Populares